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Jetting–dripping transition of a liquid jet in a
lower viscosity co-flowing immiscible liquid:
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We study the jetting–dripping (J–D) transition of a flow-focused viscous liquid jet
surrounded by a co-flowing immiscible, lower viscosity liquid. A theoretical model
describing wave propagation in open cylindrical flows has been adapted to our
problem and further expanded to incorporate spatio-temporal stability considerations
(global modes). The J–D transition sets the minimum liquid flow rate issuing as a
steady jet and breaking up into droplets whose size is commensurate with the jet
diameter. At the onset of dripping, droplets become considerably larger than jetting
droplets, under comparable flow parameters. A linear theory accounting for convective
and absolute instability is provided, along with a detailed interpretation of the
parametrical space, under realistic viscosity and density restrictions. The experimental
part sums up a collection of laboratory data illustrating the J–D transition with good
agreement with the theory.

1. Introduction
The hydrodynamic stability theory of spatially developing flows was surveyed by

Huerre & Monkewitz (1990), with respect to the space and time development of
infinitesimal perturbations around a given basic flow. Open shear flows (mixing
layers, jets, wakes, boundary layers) have provided evidence that strictly local
and spatial instability theory (real frequency) may not be generally appropriate.
Wavenumber and frequency both need to be considered complex, opening the
door to absolute/convective (C/A) and local/global instability concepts. However,
the complexity of such formulations has limited all analytic studies so far to
relatively simple flow patterns. In our case, the theory for C/A instability of liquid
jets is burdened by algebraic difficulties, which have been addressed by drastic
simplifications. The seminal study on the temporal instability of jets by Rayleigh
(1878), the spatial instability analysis of Keller, Rubinow & Tu (1973), and the
study of C/A instability by Leib & Goldstein (1986b) neglect viscosity and other
ambient effects. Leib & Goldstein (1986a, b) incorporate the jet viscosity but neglect
the ambient. Below a given critical Weber number, of order unity, the Rayleigh
instability is replaced by an absolute instability. The Weber number being defined as
We = ρV 2Rjσ

−1 (ρ is the jet density, and V, Rj its speed and radius), this amounts to
capillary forces becoming comparable to inertia forces. An overview of the progress
in this field is summarized by Ashgriz & Mashayek (1995).

Several studies on the J–D transition appear to strengthen the causal link with the
onset of absolute instability (Lin & Lian 1989; Monkewitz et al. 1988; Monkewitz
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1990; Lin & Lian 1993; Clanet & Lasheras 1999). O’Donnell, Chen & Lin (2001)
provide experimental evidence of the C/A transition at relatively large Reynolds
numbers: when the ratio of the surface energy to the kinetic energy per unit length
of the jet is sufficiently large, the disturbance can propagate and amplify both in
the downstream and upstream directions (absolute instability); when this ratio is
small, the disturbance can only propagate and amplify in the downstream direction
(convective instability). In Le Dizes (1997), the global linear stability analysis of
falling capillary jets neglects the viscosity and the density of the ambient gas; beyond
a critical Weber, the basic flow is convectively unstable everywhere except at the orifice
where the instability is absolute. Other examples of the transition in the breakup of
sheets and jets are presented by Lin (2003); the C/A transition goes hand in hand
with the J–D transition under gravity. However, experimental evidence is clouded
by several phenomena that interfer. The experiments by Monkewitz et al. (1988),
measuring the breakup distance between the jet origin and the first-drop location,
cover a wide range of Weber and Reynolds numbers. As a critical Weber number
is reached, the breakup distance is observed to decrease suddenly; eventually, it
becomes zero if We is further reduced. At this critical Weber number the jet evolves
from breaking up at a downstream location to dripping, while the mean flow rate
remains substantially invariant. The authors explain this behaviour by assuming an
absolute instability region to develop next to the orifice; the resulting finite-amplitude
oscillations probably lead to the wetting of the nozzle and to the formation of large
drops. Cramer, Fischer & Windhab (2004) explore drop formation at a capillary tip in
laminar flow. The dispersed phase is injected via a needle into a co-flowing immiscible
fluid. Jetting becomes more probable with increasing velocity of the continuous phase,
higher flow rate and viscosity of the dispersed phase and lower interfacial tension.
All parameters enhancing the ambient drag force and increasing the momentum of
the disperse phase favour the generation of a liquid jet.

It is our goal to contribute some insight (both experimental and theoretical) into
the J–D transition of viscous jets under the influence of a viscous ambient. We draw
on previous studies on the stability of coaxial flows. A common limitation to all
theoretical endeavours is their analytical complexity; on the other hand, experiments
are complicated by the simultaneous influence of diverse instability sources, and by the
taxonomic diversity of breakup. This leads to some interpretative difficulties, among
them the existence of combined instability phenomena caused by the interference
of local and global sources. Lin & Lian (1993) study the C/A instability of a
viscous liquid jet emanating into a viscous gas in a vertical pipe. The domain
of absolute instability is significantly enlarged when the effect of gas viscosity is
not neglected. Funada & Joseph (2002) generalize the inviscid analysis of Rayleigh
(1878) by accounting for the viscosity of the jet and for the viscosity and density
of the ambient. A stream function for both phases leads to a dispersion relation
for fully viscous fluids, but a spatio-temporal analysis is not undertaken. Funada,
Joseph & Yamashita (2004) use a simplified dispersion relation (assuming potential
flow and limiting viscous effects to viscous stress at the interface) to describe C/A
stability. Sevilla, Gordillo & Martinez-Bazan (2005) study inviscid coaxial air–water
jets discharging into a stagnant air atmosphere assuming a piecewise-uniform basic
velocity profile. Their analysis shows that the change from bubbling to jetting can be
understood in terms of a C/A transition.

In the following, a fully viscous formulation as in Funada & Joseph (2002) will
be explored using a linear, local, spatio-temporal theory; the breakup dynamics
cannot be described with our linear theory, but the response to small perturbations
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Figure 1. Flow-focusing setup: a nozzle emits a liquid filament 1, which is pulled by a
pressurized co-flowing fluid 2; both phases are evacuated through a coaxial orifice.

is a helpful tool to predict breakup occurrence. To map the J–D transition, we
track the evolution of the limit curve starting from the results by Leib & Goldstein
(1986b); the curve is cautiously perturbed to explore effects of the ambient liquid.
The analytical results will be tested using a compound oil–water jet produced by flow
focusing.

2. Theoretical analysis
2.1. The dispersion relation

Consider the spatio-temporal stability of a core liquid jet produced by flow focusing
(FF) (in figure 1, the core liquid 1 is surrounded by a shell of immiscible co-flowing
liquid 2; liquid viscosities µ1,2 and densities ρ1,2; cylindrical coordinates are r, z).
The following assumptions hold. (i) Both liquids are viscous and immiscible; their
interfacial surface tension is σ . (ii) The Reynolds number of the co-flowing shell
Re2 = ρ2V Dµ−1

2 is large enough to ensure a uniform streamwise velocity V ez around
the liquid jet, ez being the axial unit vector. (iii) The liquid jet diameter dj =2Rj is
roughly uniform and much smaller than the orifice diameter D, dj/D � 1, so that the
jet can be considered to flow in an unbounded co-flowing liquid domain moving with
uniform velocity V ; this simplification (both in the theory and in the setup) is an
attempt to enforce cylindrical homogeneity. Our choice circumvents the complexity
of a downstream variation of the flow regime (and hence, excludes the possibility of
heterogeneous stability behaviour at different axial locations). We are thus considering
purely cylindrical flow patterns, and disregarding the effects of local instability sources
(e.g. oscillation of the meniscus). (iv) The axial length l required for a full momentum
diffusion from the shell to the core, l ∼ ρ1V µ−1

1 d2
j , is small compared to the axial

length of the orifice L, l/L � 1, and thus both liquid streams move with a similar
uniform axial velocity V . (v) No azimuthal modes are considered (pure axisymmetric
motion), a simplification supported by extensive literature (see Lin & Webb 1994),
both theoretical and experimental, on the J–D transition.

We analyse the system response under a perturbation wave exp[i(kz − Ωt)]. The
dispersion relation for a viscous liquid cylinder in an immiscible viscous ambient
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liquid has been studied by Tomotika (1935), Funada & Joseph (2002) and Funada
et al. (2004). Wave frequency Ω , time t , wavenumber k and coordinates {r, z} are
scaled with V/Rj , Rj/V, 1/Rj and Rj respectively. Four dimensionless parameters
arise: the Reynolds and Weber numbers, and the liquid density and viscosity ratios:

Re = ρ1V Rjµ
−1
1 , We = ρ1V

2Rjσ
−1, α = ρ2/ρ1, β = µ2/µ1. (2.1)

A dimensionless dispersion relation S(ω̂, x; Re, We, α, β) = 0 (with ω̂ = RjΩV −1

and x = Rjk) has been obtained by Funada & Joseph (2002) and fully simplified by
us to

S ≡
(
x2 − y2

1

) [
N (x, y1, y2, β)

M(x, y1, y2, β)
+ 2(1 − β)

]
− Re2

We
(1 − x2) = 0 (2.2)

where ‘viscous’ wavenumbers are defined for both liquids as

y2
1 = x2 − iReω̂, y2

2 = x2 − iαβ−1Reω̂, (2.3)

and functions N and M are expressed as

N ≡ 2xβy1y2 [K0(y2)I1(y1)y1 + I0(y1)K1(y2)y2]

+ x
[
x2(β − 1) − y2

1 + βy2
2

]2
I0(x)I1(y1)K0(x)K1(y2)

+ 4x3y1y2(β − 1)2I0(y1)I1(x)K0(y2)K1(x)

− y2I1(y1)K0(y2)
{[

x4 + y2
1y

2
2 + x2

(
y2

1 − y2
2

)]
βI1(x)K0(x)

+
[
y4

1 + x4(1 − 2β)2 − 2x2y2
1 (β − 1)

]
I0(x)K1(x)

}
+ y1I0(y1)K1(y2)

{[
x4(β − 2)2 + 2x2y2

2β(β − 1) + β2y4
2

]
I1(x)K0(x)

+
[
x2

(
x2 − y2

1

)
+ y2

2

(
x2 + y2

1

)]
βI0(x)K1(x)

}
, (2.4)

M ≡ x
{
[y2K0(y2)K1(x) − xK0(x)K1(y2)]

(
y2

1 − x2
)
I1(x)I1(y1)

+β [y1I0(y1)I1(x) − xI0(x)I1(y1)]
(
y2

2 − x2
)
K1(x)K1(y2)

}
. (2.5)

Interestingly, the limit α → 0, β → 0 yields

N

M
→

(
x2 + y2

1

)2

x
(
x2 − y2

1

) I0(x)

I1(x)
− 4x2y1(

x2 − y2
1

) I0(y1)

I1(y1)
. (2.6)

This leads to the liquid–vacuum dispersion relation in Chandrasekhar (1961) and
Leib & Goldstein (1986a) (we report here a new abridged expression for the same
limit):

S ≡
(
x2 + y2

1

)2 I0(x)

I1(x)
− 4x3y1

I0(y1)

I1(y1)
+ 2x

(
x2 − y2

1

)
+

Re2

We
x(x2 − 1) = 0. (2.7)

Three key remarks are now introduced:
(i) To change the reference system from a travelling observer to a fixed observer

anchored at the nozzle, we just need to replace the wave frequency Ω = V R−1
j ω̂ by

Ω ′ = V R−1
j (ω − x) in the dispersion relation (Leib & Goldstein 1986a). The new ω

is the dimensionless wave frequency for the static observer. This can be proved by
retaining the linearized convective terms V uz and V Rz in the momentum equation
and the kinematic condition at the interface, respectively. In a fixed coordinate system,
y1 and y2 are

y1 = ±
[
x2 − iRe(ω − x)

]1/2
, y2 = ±

[
x2 − iαβ−1Re(ω − x)

]1/2
. (2.8)
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Figure 2. (a) J–D transition in the {β, We}-plane (Re = 11.2 and α = 1). Two theoretical
transition curves corresponding to positive (WP) and negative (WN) y2 roots are plotted.
(b) J–D transition in the {Re,We}-plane. The L-G limit is plotted as a dotted line.

(ii) Both ω and x are complex. Therefore, ω = ωr + iωi and x = xr + ixi ,
{ωr, ωi, xr , xi} being real numbers (‘oscillation frequency’, ‘local growth rate’,
‘wavenumber’ and ‘spatial growth rate’, respectively).

(iii) It follows that both roots of the viscous wavenumbers y1 and y2 must be
explored in the analysis, to encompass all potential sources of spatio-temporal
instability. The theoretical framework supporting the results in Funada & Joseph
(2002) and Funada et al. (2004) does not require such a precaution. However, we
observed the dispersion relation to be symmetric with respect to y1, so that identical
{ω, x} pairs result, no matter which root ±y1 is chosen. This is not the case with y2,
whose positive and negative roots yield completely different results, implying different
wave solution pairs {ω, x}.

With these remarks in mind, we carry out a spatio-temporal stability analysis
(e.g. Leib & Goldstein 1986a, b; Huerre & Monkewitz 1990; Chomaz 2005) to
map absolutely unstable wave conditions. These are confined to specific regions
of the complete parametrical space {Re, We, α, β}. It is our aim to attempt a partial
exploration of this space: we will focus on the β < 1 range, with particular emphasis
on the frequent microfluidic assumption α � 1, as in the atomization of a liquid
polymer solution surrounded by water or any polar solvent.

2.2. Analytical results

Our dispersion relation can be easily reduced to the limit in Leib & Goldstein
(1986a) (L-G limit) by setting β = 0. At this limit, there is a single wave solution,
absolutely unstable, for both positive and negative roots of y2

1 . On moving away
from this limit solution, under fixed Re and α (e.g. Re = 11.2; α = 1), β is changed to
evaluate the J–D transition loci. Two branches WP and WN are plotted in figure 2(a),
associated with the positive and negative roots of y2

2 . Both solutions collapse when
β → 0. Interestingly, the WN-branch is the one that provides physically meaningful
J–D loci {β, We}. Moving through on the {We, β} space in figure 2(a) (from jetting
towards dripping), we first cross the negative branch WN. Obviously, as we move
deeper in the lower {Re, We} region (smaller flow rates), we would eventually hit the
second branch WP, but this is physically irrelevant since absolute instability modes
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are already activated (leading to dripping) once the transition through the WP-branch
has taken place. The formal procedure to determine the J–D loci is based (Huerre &
Monkewitz 1990) on the simultaneous solution of the dispersion relation along with
the constraint that the group velocity be zero. The resulting solutions {ω∗, x∗} happen
to be saddle points; some further checks are required before identifying them as J–D
transition points. In short, we look for points {ω∗, x∗} where S = 0 and ∂S/∂x =0,
with x∗

i < 0, ω∗
i = 0; in addition, the branches issuing from the saddle point should

cross the real x-axis so as to define a range of unstable wavelengths. These conditions
identify the associated parametrical point {Re∗, We∗, α∗, β∗} as being located at the
boundary (i.e. ω∗

i = 0) of absolutely unstable behaviour.
Figure 2(b) shows several J–D transition lines separating the {Re, We}-plane into

absolutely unstable (dripping) and convectively unstable (jetting) regions, for α =1,
α = 1.03 and various values of β . The L-G solution is represented as a dotted line.
Observe that the J–D lines exhibit an elbow or fold which is not present in the L-G
limit (β =0). Thus, dripping may be obtained by sufficiently depressing either Re
or We. The plot also shows the L-G limit to closely fit our model when α =0.0012
and β = 0.001 (water jet in air). Note that the L-G model fails to describe low-Re
situations, where the influence of the outer fluid cannot be ignored.

Steady micro-jetting gives rise to greater productivity (larger liquid flow rates),
with a well-controlled and small drop size. On the contrary, dripping gives rise to
much larger, isolated droplets under similar Re and We. Dripping usually yields a
highly monodisperse spray, but it may also exhibit bi-disperse or polydisperse droplet
distributions: see Coullet, Mahadevan & Riera (2005); an analogous phenomenon
in flow-focusing micro-bubbling is described by Garstecki, Fuerstman & Whitesides
(2005). Here we postulate that such nonlinear complex dynamics may arise whenever
a given parametrical set {Re, We, α, β} leads to more than one absolutely unstable
wave solution and these solutions exhibit similar local growth rate ωi but different
local oscillation frequency ωr .

3. Experimental verification
A stainless steel FF device with dimensions D = D1 = 150 µm, L = 160 µm, and

H = 125 µm is used. The inner edge of the orifice has been rounded to minimize
vena contracta effects. The ambient focusing fluid is distilled water at T =23◦C
(ρ2 = 995 kgm−1, µ2 = 0.001 Pa s). Three silicone oils with nominal Newtonian
viscosities µ1 equal to 0.005, 0.02 and 0.1 Pa s and measured oil–water surface
tensions σ = 33.2, 30.4, and 28 mN m−1 at T = 23◦C are used as the jet-forming
liquid. The oil densities are ρ1 = 965 ± 0.2%kg m−1 . No surfactants are used. Thus,
our study explores three values β = 0.2, 0.05, and 0.01, with α = 1.033 (see figure 3).

To compare the experiments with the theory, the diameter of the unperturbed
jet radius at the orifice exit Rj is estimated by assuming both liquids to issue at
an approximately uniform velocity V = 4(Q1 + Q2)/(πD2), Q1 and Q2 being the oil
and water flow rates (Re2 ranges from 262 to 1362): Rj � (D/2) (Q1/(Q1 + Q2))

1/2.
Knowing Rj, Re and We can be calculated. We produced five oil flow rates Q1 = 2, 5,
10, 25, 50, and 100 ml h−1, using a syringe pump (Harvard Apparatus mod. 4455) with
B-D 1 cm3 plastic syringes (Q1 = 1 and 2 ml h−1), 5 cm3 (Q1 = 10 ml h−1) and 20 cm3

(Q1 = 25 and 50 ml h−1). Two water flow rates Q2 = 1.82 and 5.16 ml min−1 (±0.5%)
were supplied, using a pressurized 300 cm3 water reservoir.

Figure 4 summarizes our experimental results. Note that the J–D transition in
flow focusing exhibits a significant hysteresis effect, i.e. parametrical ranges where
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Figure 3. Theoretical J–D transition, for various (α, β, Re, We). The lines with symbols show
the experiments in figure 4 (small, joined symbols: jetting; isolated large symbols: dripping);
Q2 = 5.16ml min−1 (open symbols) and 1.82 ml min−1 (filled symbols).

(depending on the route followed) meta-stable dripping or jetting may occur in
regions corresponding to jetting or dripping, respectively. Hysteresis is caused by the
global stability of the system consisting of the capillary feeding tube, the funnel-like
meniscus attached to it, and the issuing jet. When the steady jetting regime is left
and the dripping regime entered, a considerable part of the apex region (at times, the
whole meniscus) oscillates, thus precluding the immediate recovery of steady jet flow
conditions, even after the operational parameters return to their original setup in the
former jetting regime. To enforce the recovery of jetting conditions, the system must
be turned back sufficiently far into the convectively unstable (jetting) parametrical
subspace. The amplitude of the hysteretic effect is associated to the meniscus size,
i.e. to the relation between feed tube size and orifice diameter: the smaller the feed
tube, the smaller the J–D hysteresis, and vice versa. This is entirely analogous to the
J–D transition in electrospray, a phenomenon sharing many fundamental features
with flow focusing. Moreover, the higher the liquid viscosity, the larger the associated
hysteresis effect. In our experiments, we have chosen a sharp-edged (figure 1) feed
tube whose inner diameter D1 coincides with the orifice diameter. We thus minimize
the hysteresis effect while maintaining a genuine flow-focusing geometry. Figure 4
shows, whenever it is feasible, the hysteresis range of each experimental sequence.

Therefore, our experiments go from jetting to dripping and not the other way
round, because the re-stabilization of a dripping mode requires driving the system
very deep inside the jetting mode. Note in figure 4 that, owing to setup limitations,
only four of the six experimental sequences were brought into the dripping regime.

Figures 2(b) and 3 show a surprising J–D transition topology: the upper branch
is slanted so that a potential for double transition exists; should we move along a
constant-Re line, we would first meet the J–D transition and subsequently cross a D-J
transition. Of course, such a result is to be taken cautiously, because of hysteresis. The
potential for double transition is mostly theoretical, since experiments do not follow
a constant-Reynolds-number route: when we gradually increase the axial speed V ,
both the Weber and Reynolds numbers grow (see (2.1)), so that we would move over
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(c)

Q1 = 10 ml h–1
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(d)µ1 = 0.02 Pa s, Q2 = 1.82 ml min–1

(e)

Q1 = 10 ml h–1

Q1 = 5 ml h–1
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µ1 = 0.01 Pa s, Q2 = 1.82 ml min–1

µ1 = 0.02 Pa s, Q2 = 5.16 ml min–1
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( f ) µ1 = 0.01 Pa s, Q2 = 5.16 ml min–1

Q1 = 25 ml h–1

Q1 = 10 ml h–1

Q1 = 5 ml h–1

Q1 = 2 ml h–1

Figure 4. Experiments for various values of Q1,Q2 and µ1 (α = 1.033; (a, b) β = 0.01; (c, d)
β =0.05; (e, f ) β =0.2; exposure time: 100 ns). The scale is given by the dash, measuring
200 µm. In (e) the insert shows the jet breakup region.

a parabolic line crossing the J–D boundary just once. Another intrinsic experimental
difficulty is the water ambient, whose divergent flow after the orifice exit tends to open
up the core stream leading to radial dispersal of the drops. Our choice of a sufficiently
large L distance (L = 160 µm> D) helps to preserve parallel flow conditions over a
distance long enough to give rise to a roughly cylindrical oil jet.

In spite of experimental difficulties, our theoretical model provides a tolerable fit
of the J–D transition data as illustrated by the pictures in figure 4. Experimental
dot curves in figure 3 show a sequence of five measurements with different core
liquid flow rates Q1; the remaining physical parameters are fixed. The J–D transition
takes place at the lowest Q1 flow rate compatible with a steady jet. Any flow rate
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below this threshold produces the emission of large, isolated drops (dripping): the
drop-producing mechanism is the sequential filling and detachment from a pulsating
axial filament, an elongated version of faucet-dripping (see figure 4d). Jetting drops
show a diameter, roughly similar to the jet diameter, while dripping drops are
substantially larger. The J–D transition is remarkably well-predicted for the smallest
viscosity oil (figure 4a) and Q2 = 1.82 ml min−1: it takes place at Q1 � 4.9ml h−1. The
transition is also very well-predicted at β =0.05 for both Q2 flow rates. When dealing
with the largest viscosity oil (figure 4e, f ), the transition is more difficult to assess,
although the experimental results fall very close with the predicted transition within
the experimental uncertainties associated with the hysteresis effect. In figure 4(e, f ),
the top pictures show jetting behaviour, while the remaining shots illustrate a typical
dripping process: a long pulsating tendril is filling a thick drop; some recoil is
observed, owing to braking effects from the ambient liquid.

4. Concluding remarks
We attempt to provide detailed insight into a particular instance of local convective–

absolute (C/A) instability transition. Our choice, a viscous liquid jet co-flowing with
another liquid of lesser viscosity, is relevant as a representative flow-focusing setup,
with frequent spray and emulsion-producing applications. The dispersion relation is
obtained by revisiting prior results from Funada & Joseph (2002), whose analytic
formulation is reworked into a simplified formula and then explored assuming complex
frequency and wavenumber. Former C/A studies did not fully include viscous effects
or were restricted to simple jets flowing in a vacuum. Some analytical challenges have
been overcome, among them the detection of the roots and the discrimination among
different branches. The structure of the J–D boundary line in the Weber–Reynolds
number plane is shown to exhibit an elbow: absolute instability can be reached by
sufficiently depressing either We or Re. In the low-Re limit, even a co-flowing liquid
shell with negligible density or viscosity is shown to give rise to absolute instability
(dripping) for the whole We-range, a result that shows that the jet-in-a-vacuum model
by Leib & Goldstein (1998a, b) must be used cautiously.

The experimental part sums up a large collection of data, and illustrates the
correlation between the C/A transition and the onset of dripping. Unwanted effects
arising at the nozzle meniscus (a source of independent instability) and an imperfectly
cylindrical jet geometry lead to some distortion in the results. Nevertheless, a
satisfactory agreement is observed between the breakup pattern sequence and the
theoretical prediction.

This work is supported by the Ministry of Science and Technology of Spain, grants
nos. DPI2002-04305-C02-02 and DPI2004-07197. Elettra Capozza ran the experiment
and took the pictures in her four months stay at our lab, a very appreciated help.
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84 A. M. Gañán-Calvo and P. Riesco-Chueca

Coullet, P., Mahadevan, L. & Riera, C. S. 2005 Hydrodynamical models for the chaotic dripping
faucet. J. Fluid Mech. 526, 1–17.

Cramer, C., Fischer, P. & Windhab, E. J. 2004 Drop formation in a co-flowing ambient fluid.
Chem. Engng Sci. 59, 3045–3058.

Funada, T. & Joseph, D. D. 2002 Viscous potential flow analysis of capillary instability. Intl J.
Multiphase Flow 28, 1459–1478.

Funada, T., Joseph, D. D. & Yamashita, S. 2004 Stability of a liquid jet into incompressible gases
and liquids. Intl J. Multiphase Flow 30, 1279–1310.

Garstecki, P., Fuerstman, M. J. & Whitesides, G. M. 2005 Nonlinear dynamics of a flow-focusing
bubble generator: An inverted dripping faucet. Phys. Rev. Lett. 94, 234502.

Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows.
Annu. Rev. Fluid Mech. 22, 473–537.

Keller, J. B., Rubinow, S. I. & Tu, Y. O. 1973 Spatial instability of a jet. Phys. Fluids 16, 2052–2055.

Le Dizes, S. 1997 Global modes in falling capillary jets. Eur. J. Mech. B/Fluids 16, 761–778.

Leib, S. J. & Goldstein, M. E. 1986a Convective and absolute instability of a viscous liquid jet.
Phys. Fluids 29, 952–954.

Leib, S. J. & Goldstein, M. E. 1986b The generation of capillary instabilities on a liquid jet.
J. Fluid Mech. 168, 479–500.

Lin, S. P. 2003 Breakup of Liquid Sheets and Jets. Cambridge University Press.

Lin, S. P. & Lian, Z. W. 1989 Absolute instability of a liquid jet in a gas. Phys. Fluids 31, 3260–3265.

Lin, S. P. & Lian, Z. W. 1993 Absolute and convective instability of a viscous liquid jet surrounded
by a viscous gas in a vertical pipe. Phys. Fluids A 5, 771–773.

Lin, S. P. & Webb, R. 1994 Nonaxisymmetric evanescent waves in a viscous liquid jet. Phys. Fluids
6, 2545–2547.

Monkewitz, P. A. 1990 The role of absolute and convective instability in predicting the behavior
of fluid systems. Eur. J. Mech. B/Fluids 9, 395–413.

Monkewitz, P. A., Davis, J., Bojorquez, B. & Yu, M. H. 1988 The breakup of a liquid jet at high
weber number. Bull. Am. Phys. Soc. 33, 2273.

O’Donnell, B., Chen, J. N. & Lin, S. P. 2001 Transition from convective to absolute instability in
a liquid jet. Phys. of Fluids 13, 2732–2734.

Rayleigh, Lord 1878 On the instability of jets. Proc. Lond. Math. Soc. 10, 4–13.

Sevilla, A., Gordillo, J. M. & Martinez-Bazan, C. 2005 Transition from bubbling to jetting in
a coaxial air–water jet. Phys. Fluids 17, 018105.

Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by
another viscous fluid. Proc. R. Soc. Lond. A 150, 322–337.


